Machine learning of functional class from phenotype data
نویسندگان
چکیده
منابع مشابه
Machine learning of functional class from phenotype data
MOTIVATION Mutant phenotype growth experiments are an important novel source of functional genomics data which have received little attention in bioinformatics. We applied supervised machine learning to the problem of using phenotype data to predict the functional class of Open Reading Frames (ORFs) in Saccaromyces cerevisiae. Three sources of data were used: TRansposon-Insertion Phenotypes, Lo...
متن کاملStatistical Machine Learning from Data
NOTE: A good introduction to various machine learning models. NOTE: The theory is explained here with all the equations. [4] Vladimir N. Vapnik. The nature of statistical learning theory. Springer, second edition, 1995. NOTE: A good introduction to the theory, not much equations. NOTE: Very good paper proposing a series of tricks to make neural networks really working.
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملMachine Learning from Imbalanced Data Sets
For research to progress most effectively, we first should establish common ground regarding just what is the problem that imbalanced data sets present to machine learning systems. Why and when should imbalanced data sets be problematic? When is the problem simply an artifact of easily rectified design choices? I will try to pick the low-hanging fruit and share them with the rest of the worksho...
متن کاملMachine Learning for Machine Data from a CATI Network
This is a machine learning application paper involving big data. We present high-accuracy prediction methods of rare events in semi-structured machine log files, which are produced at high velocity and high volume by NORC’s computer-assisted telephone interviewing (CATI) network for conducting surveys. We judiciously apply natural language processing (NLP) techniques and data-mining strategies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2002
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/18.1.160